

Integrated Photonics Grand Challenges and Key Needs for 2018

Lionel C. Kimerling *MIT AIM Photonics Institute* IPSR-International Webinar: December 21, 2017

Data Centers – 3D/Augmented Reality/Automotive – 5G/IoT

integration – standardization – cross-market platforms - Integrated Photonics Technology supply chain

Link to webinar recording (good for six months after event): http://bit.ly/2lWqt3t 1

- Critical Themes (3-10)
 - Functional Blocks Platforms System Level Design
- Economics (10-16)
 - Demand Component-to-System Cost Reliability
- Technology (17-30)
 - TxRx (DC) RF Signal Processing (5G) *e-p Synergy*
 - Sense: sampling and signal interpretation
- Manufacturing (31-34)
 - Standardization Consolidation Coordination
- Success in 2018 (35-36)
 - *Continuity*: electronics-photonics-integration

Infrared laser projector components: i) a vertical-cavity surface-emitting laser or edgeemitting laser, ii) wafer-level optics, and iii) diffractive optical elements.

Source: LEDinside, Dec., 2017

Technologies: multipoint CMOS imaging; ToF mapping; structured light; phased arrays.

Cable – Board – Package - Chip

2015-16	2017-20	2020-25	Beyond	
Discrete Devices	Interposers	EO CPU/ASIC	Logic-Memory-IO	
EO Transceivers	InP VCSEL	Si Lasers	Integrated SiPh SoC	
Interconnect Modules	EO SiP/PoP	Multi-Die SiP	Photonic Systems	
MM Connectors	Fly-Over Cables	EO/Waveguide	Wafer-Panel	
		PCB	Substrates	
MM Cables	MM-SM Connectors	SM Connectors	IO Connectors	
AOCs	MM-SM AOC	SM Cables	Future WG	

Interconnects Packaging SiPh Integration

Silicon Photonics is the "future proof", modular solution for SM-WDM bandwidth density scaling.

- increases: yield, reliability, density
- <u>reduces</u>: cost, time to market, power, latency

Integrated Photonic Systems Roadmap 2016

Automated Design

- validated PDK models: e-p circuits and systems
- foundry infrastructure: IP licensing/indemnification
- Monolithic Integration
 - heterogeneous SM functional blocks
- Optical Packaging
 - on-chip/off-chip; interposer; on-board parallelism
 - parts supply chain; known failure modes
- Test
 - Design-for-Test; BIST; high throughput

The Road to Silicon e-p Synergy

	• • •					
Technology	Status					
2015-16						
GaAs Lasers	VCSEL arrays commercially deployed in datacom					
InP Lasers	Edge emitter arrays commercially deployed in telecom					
Ge-on-Si Lasers	Research demonstration by several labs					
Ge-on-Si Detectors	Fully waveguide integrated, commercially deployed					
Waveguides	Si, SiON, SiN commercially deployed					
SiP/SoC Assembly Technology	Electronics, but not photonics					
Si Photonic Integration	Commercially deployed in cable and board assemblies					
2	2017-20 Projected					
Ge-on-Si Lasers	Early market entry					
Ge-on-Si Detectors	Pervasive commercial deployment					
Waveguides	Pervasive commercial deployment, single channel					
SiP/SoC Assembly Technology	Early 2.5 D deployment					
Si Photonic Integration	Pervasive commercial deployment: cables and boards					
	2020-25					
Waveguides	Pervasive commercial deployment: WDIVI					
SiP/SoC Assembly Technology	Pervasive commercial deployment: cables and boards					
Si Photonic Integration	Emerging chip-to-chip intra-package					
Bevond						
SoC Assembly Technology	Embedded in distributed circuit/system architectures					
Si Photonic Integration	Transceiver-less: embedded electronic-photonic					
	synergy					

700 contributors

254 organizations

16 countries

2016 ROADMAP

Developed by AIM Photonics Academy in collaboration with The MIT Microphotonics Center and the International Electronics Manufacturing Initiative (iNEMI)

AIM Photonics

10/17 TWG updates

InP, SiN (GaN) are important to an emerging heterogeneous e-p platform.

Key Attribute	Parameter	Description	2016	2018	2020	2025	2035
Transparency	dB/cm	attenuation/distance	0.35	0.1	0.05	0.001	0.001
Material	n	effective index	1.8-4	1.8-4	1.8-4	1.8-4.	1.8-4.
Index Contrast	∆n	n(core) - n(clad)	10 ⁻³ -3	10 ⁻³ -3	10 ⁻³ -3	10 ⁻³ -3	10 ⁻³ -3
Stability	pm/°K	spectral shift of resonator	25	1	1	0.5	0.01
Power	mW	optical power capacity	30mW	30mW	50mW	100mW	500mW
Wafer Uniformity	nm	layer thickness variation	10nm	1nm	1nm	0.5nm	0.5nm
Material System	Core /Clad	waveguide and clad materials	Si,SiN /SiO ₂	Si,SiN, Ge,ChG /polymer, SiO ₂ ,ChG	multilayer	multilayer	multilayer

Table 3. Integrated Waveguide Roadmap

- Extend this table to **3D waveguide (industry expects this to happen by 2020)**
- Extend this table to independently *routable optical layers* (vertically integrated WG)
- Integration level complexity to be added
- Study cost scaling at system level

Ajey Jacob, Global Foundries co-chair, Monolithic Integration TWG

Table 5. Photodetector integration roadmap

Key Attribute	Parameter	Description	2016	2018	2020	2025	2035
Absorption	α (cm ⁻¹)	loss @ 1550nm	10 ³	10⁴	10⁴	10⁴	10⁴
Dark Current	I (nA)	interface + bulk	0.2	0.1	0.1	0.1	0.1
Process Integration	cm ⁻²	dislocation density	10 ⁷	10 ⁷	10 ⁶	<10 ⁵	0
Efficiency (p-i-n)	R (A/W)	responsivity	1	1.1	1.1	1.1	1.1
Bandwidth (p-i-n)	B (GHz)	B @ 1550nm	40	67	100	100	100
Gain x Bandwidth (APD)	GB (GHz)	GB @ 1550nm	300	400			
Guided Power	mW	~linear response	30mW	100mW	100mW	100mW	100mW

Table 6. Modulator integration roadmap

Key Attribute	Parameter	Description	2016	2018	2020	2025	2035
Baud Rate	Gb/s	OOK rate	25	50	50	100	100
ExtinctionRatio/InsertionLoss	dB/dB	$\Delta \alpha / \alpha$	2	2.5	3		
Spectral Range	nm	@ Δα/α spec	25	25	25	25	25
Spectral Efficiency	b/Hz	DP-QAM	2	2	4	8	8

To be added in 2018:

specification of Materials and Tool performance

Ajey Jacob, Global Foundries co-chair, Monolithic Integration TWG

Table 7. Laser, Gain Block, Optical Switch integration roadmap

Key Attribute	Parameter	Description	2016	2018	2020	2025	2035
Coupled Power	mW	waveguide coupled	1	5	20	30	30
Spectral Range	nm	1200, 1310, 1550	+/-10	+/-10	+/-10	+/-10	+/-10
Temperature Stability	pm/K, mW/K	wavelength, power	5	1	1	0.5	0.01
Package Integration	optical power	wall plug, package or	2D	2D	2D	regulated	e-p
	supply	waveguide integration	ext	ext	hybrid	wall plug	monolithic
Reliability	MTTF (hrs)	component life	10⁴	10⁴	3x10⁴	3x10⁴	10°

Long discussion on reliability. Agreed to keep the current numbers.

Ajey Jacob, Global Foundries co-chair, Monolithic Integration TWG

Outline: Economics, Technology, Manufacturing ... Questions?

- Will the Data Center market support the required R&D and drive adoption of integrated photonic technology?
- Key needs
 - platforms that leverage R&D investments
 - standards that limit R&D risk
 - manufacturing infrastructure for high volume ramp

Case Study: Transceiver

Hardware

Server Racks, Switches, Optical Transceivers, Fibers, Building Facilities (Shell, Power Supply, Cooling)

Software

Platform-level Software, Cluster-level Software, Application-level Software

Set-up and Operation

Development, Purchase, Installation, Electricity, Maintenance

Barroso, Luis Andre, Jimmy Clidaras, and Urs Hoelzle. The Datacen`ter as a Computer: A`n Introduction to the Design of Warehouse-Scale Machines. Morgan & Claypool, 2013.

╋

The transceiver is part of the Data Center system.

W. Yu and R. Kirchain, MIT

Economics

\$ sales to support R&D cost of one new product

For an estimated Silicon Photonics TAM of \$200M, the <u>industry</u> product cycle is 1yr for one product!

For estimated Silicon Photonics revenues of \$30M for one <u>company</u>, the product cycle is 3.3yrs!

W. Yu and R. Kirchain, MIT

Can sales from the Data Center sector support all new industry TxRx products?

	# of Datacenters	Bisection Bandwidth Pb/s	# of layers of transceivers	\$/Gbps per transceiver	\$M transceiver sales	# of Products such sales can support
Google	15	5.2	4	1	312	1.5
Amazon	44	5.2	4	1	915.2	4.5
Microsoft	36	5.2	4	1	748.8	2.8
Facebook	~10	5.2	4	1	208	1.0
200G x 400G ^x	2 channels 4 channels x 8 channels	OSFP QSFP-DD COBO	x ^{Si} = InP	36 products	5 >>	Mega-DCs can support 10 products each year.
	1. Hiah	R&D cos	st + Marke	t Fraamen	tation	

will support 36 product cycles of 3.6 yrs.

W. Yu and R. Kirchain, MIT

Shortage of components

"Shortages of high-end optics, such as EML and DFB laser chips, is the main limiting factor for 100GbE market growth in 2016." – *LightCounting.com*

Limited production capacity

- High risk to make a multi-million investment before the accepted solution is announced.
- It takes time to add equipment and people into production line.

"People assumed they had time to ramp...[but] the industry has never seen such a ramp with optics ." – Andreas Bechtolsheim

2. Production ramp time to high volume production limits revenue. W. Yu and R. Kirchain, MIT

Economics

DC Scaling: Cost and Time

Time

R&D costs and production ramp rate determine

Data Center revenue portion for integrated photonics.

- Cost and \$/Gb/s will decrease with each new product technology.
 - Ramp time to high volume production limits revenue.

W. Yu and R. Kirchain, MIT

- The optical transceiver is a bottleneck due to cost and time.
 - Cost is i) device cost with ii) full implementation cost of that technology solution.
 - *Time* is i) time to sample plus ii) ramp time to high volume implementation.
- Supply Chain coordination is critical to high volume production.
 - Vendor and upstream supplier coordination
 - solution winner, *time scales* and volume.
- The winning product should have an optimal combination of:
 - performance, cost and *manufacturing scalability*.

Building cross-market platforms

Transceivers

- the transition to on-board optical interconnection
- MT connectors
- optical interposers technology and cost
- Analog RF optical signal processing
 - transceivers: phase modulation
 - special purpose FFT processor: frequency channelization
- Drivers for high level photonic integration
 - coherent optical circuits
 - on-chip optical networks
- Sensing and Optical Phased Arrays (>2018 AIM targets)

Pluggable module with VSR/CAUI-4 interface may require two retimers

Sequence of line card implementations for increased bandwidth

Nicholas Ilyadis, Broadcom

- Before the benefits of silicon photonics can be realized, new high performance and cost effective solutions to optical packaging and connectorization must be developed.
- Optimum performance and functionality from silicon photonic devices and circuits require single mode (SM).
- SM requires precision alignment inside the package and in optical connectors.
 - expanded-beam (10um expanded to 80um) optical connectors relieve alignment and dust limitations
 - early entry for MM at short reach?

Optical interfaces degrade performance and increase cost.

Tom Marrapode, Molex

On-Board Optical Interconnection AIG

OBO AIG (Application Interest Group): 12 companies, international Phase 1 complete in 2017; Phase 2 in 2018 Technology: TxRx 20

System Requirements

- Single-mode operation at SiPh operating wavelengths [1300, 1550 nm]
- Low propagation loss at SiPh operating wavelengths [<~ 0.01 dB/cm]
- Low polarization dependent loss (PDL) [< 0.1 dB]
- Low-loss coupling to standard SM fibers
- Transceiver-to-transceiver loss small [<~ 3 dB]
- Ease of termination (low cost) in connectors and sockets
- Ease of routing from mid-board modules to board-edge connectors.
- Low sensitivity of optical properties to temperature & humidity
- Reflow compatibility (if embedded in PCB) [260 C]

On-Board optical interconnection is an unsolved system problem.

Terry Smith, 3M

The purpose of an interposer is i) to spread a connection to a wider pitch, ii) to reroute a connection to a different connection, iii) to enhanced reliability and assure successful assembly.

- Needs low-loss waveguides (but easier than PCB)
- Needs new, cost-effective low-loss opticalcoupling bond between photonic components and interposer waveguides.
- Increases system parts count.
- Increases system process steps.
- May require special handling (due to fragility, temperature sensitivity, etc.)
- May require manual attachment to PCB.

Assembly and Test Costs

Interposer Assembly Dominates Package Cost.

W. Yu and R. Kirchain, MIT

Technology: TxRx

Transceiver

- power, bandwidth density
- modulation format, polarization, spectral efficiency
- RF Optical Signal Processor
 - power, bandwidth density
 - notch filter, FFT
- WDM Front End
 - power, bandwidth density
 - temperature stabilization, e-p lambda lock

Silicon Optical Interposer

Link Evaluation Board

Test Schematic

- 25-Gbps error-free data link on a silicon optical interposer with an FPGA
- Transmitter pre-emphasis and receiver equalization
- Compatible with optical interconnect standards: OIF CEI-25G, 100GbE, 400GbE
- Optical-pin/MM near term implementation

D. Okamoto, et. al., "Demonstration of 25-Gbps Optical Data Links on Silicon Optical Interposer Using FPGA Transceiver", ECOC 2014. (PETRA, Japan)

Technology: Functional Blocks

The Commercial RF Photonics Platform

Schematic diagram of an InP-based 500Gb/s PM-QPSK transmitter PIC and the active block PIC on the right.

- 10 tunable distributed feedback lasers
- 40 Mach-Zehnder modulators
- all required sense and control electronics.

Fred Kish, Infinera)

Technology: Functional Blocks

- low-loss silicon nitride circuit: ring resonators for pre-processing and optical filtering units
- low biasing of Mach-Zehnder modulator for link optimization to achieve low NF

- 8 dB RF gain
- noise figure: 15.6 dB

- spurious-free dynamic range: 116 dB
- rejection >50 dB in the stopbands

"Lossless integrated RF photonic filter with record-low noise figure and 116 dB of dynamic range", Liu, et.al., CLEO Pacific Rim 2017 and Opt. Lett. 42, 4631-4634 (2017)

Technology: RF Signal Processor

Heterogeneous materials integration challenge: monolithic, continuous process flow with associated economic advantages

A. Paolella, Harris, IPSR 2016, RF Photonics Chapter

Functional Blocks

3mm x 6mm e-p chip

transmitter/receiver banks; coupler, photodetector, ring modulators electronic–photonic system-on-chip: >70M transistors and 850 photonic components "Single-chip microprocessor that communicates directly using light", Sun, et.al., Nature, 528 534 (2015). Technology: WDM Front End

LSI Photonics: I/O for 32 bit Network

Single Tile 1mm² Area of a Multi-Core Processor

64 λ Node Multicore Core WDM Scenario at 1mm² per tile

Single Wavelength per Tile ID

- 64 λ WDM
- Si/SiO₂ HIC waveguide
- 40 wg 32 data, 8 metadata
- Tile area used: 0.5mm²

Tile Transmitter

- 40 modulators for each core
- Single wavelength for all bit lines
- SiGe EA modulator & driver

Tile Receiver

- 63 ch. (N-1) receiver section per tile
- 40 one bit data lines
- 5um Ring Resonator Filters
- SiGe Detector integrated w/Filters

chip/package/board-level networks driving LSI silicon photonics

Technology: LSI Scaling ... Questions?

Manufacturing

Building the Integrated Photonics Manufacturing Ecosystem

Manufacturing

Si Wafer Processing Hub

- □ Years of proven silicon photonics results
- □ 300mm tools provide outstanding quality photonics
- □ 3D stacking w/CMOS

300mm Si Photonics Wafer

Partnerships drive continuous revitalization investments

Continuously Tunable

Intrinsic Si Metal1 #-doping Metal2 #-doping Metal Conta

Optical Orbital Angular Momentum Generator

R=17µm

Undamaged III-V FIN

95nm Si₃N₄ Taper on

Si Waveguide

Prior | Post CMP

Albany, NY

95nm gap in Si

1 Year from now	3 Years from now	5 Years from now	
Funnel/vector students in related areas into IP start training from early on in school carrier market appeal of IP to draw interest short courses for broad Ed level (online/pre-recorded) short courses for specialized skills (higher education)	Offer lots of hands-on training to students (MS/PhD level first then BS) heavier marketing of IP appeal offer diversity in skills thoughtsspecialty tracks on BS and MS offer IP focus programs: MS; BS tracks students from early on degree	Have students ready to graduate who have been devoted to IP from the beginning	
Establish working MPW model with working EDPA tools to enable R&D ventures in Silicon Photonics	Establish product packaging solutions to target the various markets for optical products	Establish Packaging HVM capability to support volume growth to compete in worldwide markets.	
Establish a baseline for full integrated photonics production. Provide initial training to access production runs.	Engage standard bodies for package processes . Successfully scale out PICs for larger volume production.	Broaden HVM applications beyond the datacom sector.	
optics development designPhotonbaseline accessproductsPDKearly timeprocessestools IP runs workMPWtrained integrationShort samplefacilities established	afordable Circuits capitalize foundry package Student marketing Package Student support Photon MS created support Photon MS optics delver track products trained appeal large integrationBS levels volume offerdesign class established emostrate co-designing electronically diverse co-designing electronically diverse application	design foundry Nolume Photon processes aims Products package moving Support scale moving Support scale moving Continue established development	

Manufacturing

- Ge-epi at 45nm node: compatible thermal budget
- optical I/O options: v-groove, optical pins
- hermeticity
- 300mm challenges: test, C_{PK} and cost

Board-level Interconnection

- TxRx: pluggable (reliability) vs. surface mount (cost)
- established solutions in system test
- system requirement focus: interfaces (connectors)
- Design at system level vs. chip shrink
 - chip-package-module-system co-design

45nm is a compelling transition node for Silicon Photonics. Connectors limit on-board optical interconnection.

Manufacturing

- Design
 - robust Design-for-Yield; package simulation
 - functional blocks: RF-OSP, TxRx, WDM e-p front end
- Monolithic Integration
 - system requirements for switch and laser integration
- Assembly
 - alignment processes, tolerances and associated costs
- Connectors
 - Module-PCB and PCB-cable connectors
- Packaging
 - optical requirements for embedded package, vertical/edge access; board surface mount; hermeticity
- Test
 - Design-for-Test; in-line monitors

Manufacturing ... Questions?

Thank You and Happy Holidays

Acknowledgements

- AIM Photonics Institute members
- IPSR International contributors
- MIT Microphotonics Center members
- iNEMI members
- OSA/OIDA members
- IEEE Photonics Society members
- SPIE Photonics West participants
- Photon Delta and the World Technology Mapping Forum TWGs