

Webinar: Highlights of the World Technology Mapping Forum

Link to webinar recording: <u>http://bit.ly/2q0iqEs</u> (link is good for approximately 6 months after webinar)

Prof. Ton Backx President, Institute for Photonic Integration at Eindhoven University of Technology Thursday, October 18, 2018

Driving Photonics Manufacturing

IPSR-International 2018 Seminar Calendar Thursdays at 11 AM EDT (1700 CET)

- Thursday October 18 Ton Backx: Highlights of WTMF Meeting
- Thursday November 1 Tom Brown: AIM Photonics Test, Assembly, Package Facility
- Thursday-Friday. November 29-30 IPSR-International Fall Meeting at MIT
- Thursday December 13 Prof. Kimerling "Grand Challenges and Key Needs"
- Future Presentations
 - Analogue RF AIG
 - Indium Phosphide & 3-5 Compounds TWG
 - Electronic-Photonic Design Automation TWG
 - Electronic-Photonic Test TWG
- For additional information
 - <u>www.photonicsmanufacturing.org</u>

Photon Delta

WTMF technical content and outcome

Ton Backx

Outline

World Technology Mapping Forum
 Technical Content
 Outcome
 Next steps

Outline

World Technology Mapping Forum
Technical Content
Outcome
Next steps

World Technology Mapping Forum - WTMF

The objective of the WTMF is to establish and sustain a trust based global network of partners who are working together on photonic integrated circuits and systems and jointly enable fastest possible technology and application developments in this emerging technology field

Commonly agreed vision and problem definitions
 Collaboration in creation of solutions
 Bring Ecosystem requirements into the Lab environments

Lionel Kimerling perfectly summarized the key success factors for meeting market requirements during the coming decades where exponential growth with high growth rate factors in various application domains is foreseen

Establish an environment of mutual trust and collaboration
 Enable scaling of performance and production capacity
 Map current needs on existing technologies and create the roadmaps mapping future requirements on next generation technologies (R&D)

Lionel Kimerling concluded following:

Scaling of performance and production capacity will be governed by:
 Universal Parallelism as the key word in scaling of photonic integrated circuits and systems

Very disciplined development of application specific cross-market platforms and creation of standard functional modules as basic building blocks for creation of any functionality

Map current needs on existing technologies and create the roadmaps mapping future requirements on next generation technologies (R&D)

The WTMF has been initiated by PhotonDelta in 2016 to have major developers of Photonic Integrated Circuits and Systems technology and applications from all over the world meet and discuss roadmaps

Structured outlook on technology requirements in (near) future

- Specific technology related
 - Design
 - Photonic Integrated Circuit manufacturing
 - Integration of Photonic-Electronic circuits
 - Testing
 - Packaging
 - Sonnections (electric, light)
 - Systems assembly

Specific application or application domain related

During the WTMF meeting June 20-22, Twente, The Netherlands agreement was achieved on the structure and the agenda for the Integrated Photonics Systems Roadmap – International (IPSR-I):

Outlook on technology requirements in (near) future structured as follows:

- Monolithic Silicon Integration
- Indium Phosphide & 3-5 Compounds
- Electronic-Photonic Packaging
- Electronic-Photonic Connectors
- Substrate
- Electronic-Photonic Assembly
- Selectronic-Photonic Test
- Integrated Photonic Sensors
- Electronic Photonic Design Automation

Outline

World Technology Mapping Forum
Technical Content
Outcome
Next steps

Merger towards IPSR-I in Spring 2019

Current starting point are separate documents –IPSR and WRIPestablished with a high level of collaboration and interaction

WG leaders have strongly collaborated the past year
 New insights and knowledge developed during the process have been integrated in both roadmaps

Structures of the documents have much similarity but significant differences still exist

Progress has been made in establishing the team of Technology Working Group leaders; we still are looking for additional people though

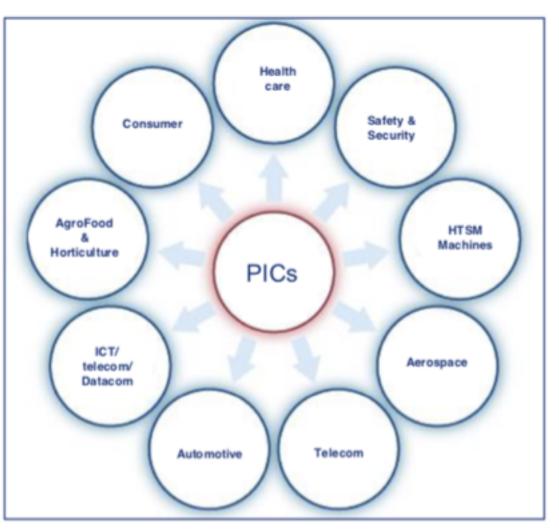
Technical working group	Co-chair	Co-chair	Co-chair
Monolithic Silicon Integration	Abdul Rahim (IMEC)	Lionel Kimerling (MIT)	Ajey Jacob (Global Foundries)
InP & 3-5 Compounds	Mei <mark>nt Smit (</mark> TU/e)	Gloria Hoefler (Infinera)	Mike Wale
Silicon Nitride	Sami Musa (Vision & actions)	Lionel Kimerling (MIT)	
Novel Materials	Felix Betschon (Vario optics)	Michael Lebby (Lightwave Logic)	
Foundry Integration for Photonics	Huub Ambrosius (TU/e)		
Heterogenous integration	Abdul Rahim (IMEC)		
Electronic-Photonic Packaging	Peter 'O Brien (Tyndall)	Bill Bottoms (3MTS)	
Substrates	Peter Maat (Astron)	Terry Smith (3M)	
Electronic-Photonic Assembly	Paul van Dijk (LioniX-International)	Yi Quan (MRSI Systems)	Dick Otte (Promex Industries)
Electronic-Photonic Testing	Tom Brown (U of Rochester)	Dave Armstrong (Advantest)	Sylwester Latkowski (TU/e)

Photonic devices content

Photonic devices group	Co-chair	Co-chair	Co-chair
Integrated photonic components and devices	Paul van Dijk (LioniX-International)		
RF Photonics	Arthur Paolella (Harris)	Paul van Dijk (LioniX-International)	
Electronic-Photonic Connectors	John MacWilliams (US competitors)		
Integrated Photonic Sensors	Ben Miller (U of Rochester)	Anu Agarwal (MIT)	
IPSR Cost Emulators	Arjen Bakker (Synopsis / Phoenix)	Randolph Kirchain (MIT)	Elsa Olivetti (MIT)
Electronic Photonic Design Automation	Twan Korthorst (Synopsis / Phoenix)		
Process <mark>Des</mark> ign Kits	Arjen Bakker (Synopsis / Phoenix)		
Product standardization and structure			

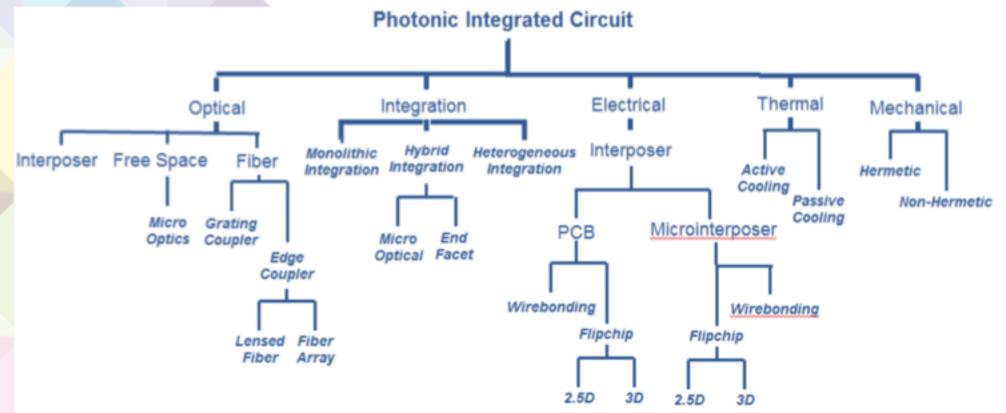
Product content

	Product emulator group	Co-chair	Co-chair	Co-chair
D	atacenter / Telecom	Richard Pitwon (Seagate), Bob Pfahl (iNEMI)	Michael Robertson (Huawai)	Michael Lebby (Lightwave Logic)
In	ternet of Things and Industry	Christophe Py (CNRC)	Rich Grzbowsky (Macom)	
A	utomotive	Domenico D'Agostino (Aptiv)	Bob Pfahl (iNEMI)	
A	eronautics	Rolf Evenbleij (Technobis)		
Bi	o Photonics and medical	Thierry Robin (Thematys)	Bob Pfahl (iNEMI)	Anu Agarwal (MIT)
A	grofood	Rick van der Zedde (WUR)		
D	efence	Dan Hermansen (MyDefence)		

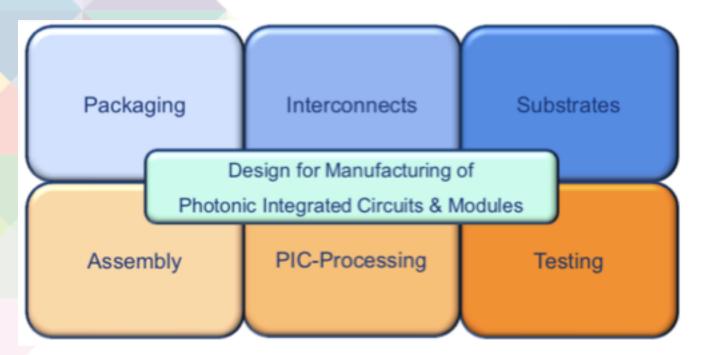


High Volume – Low Cost

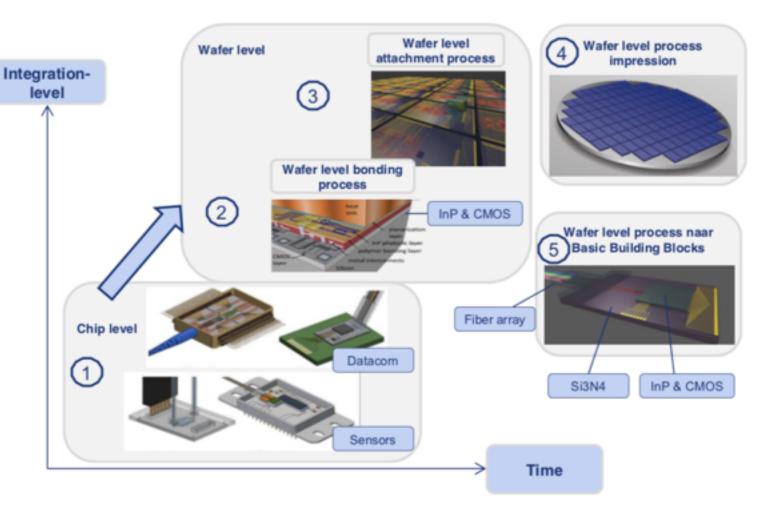
- Datacom (Next generations Datacenter architectures)
- Telecom (5G and next generations)
- Consumer products


Low Volume – High Value

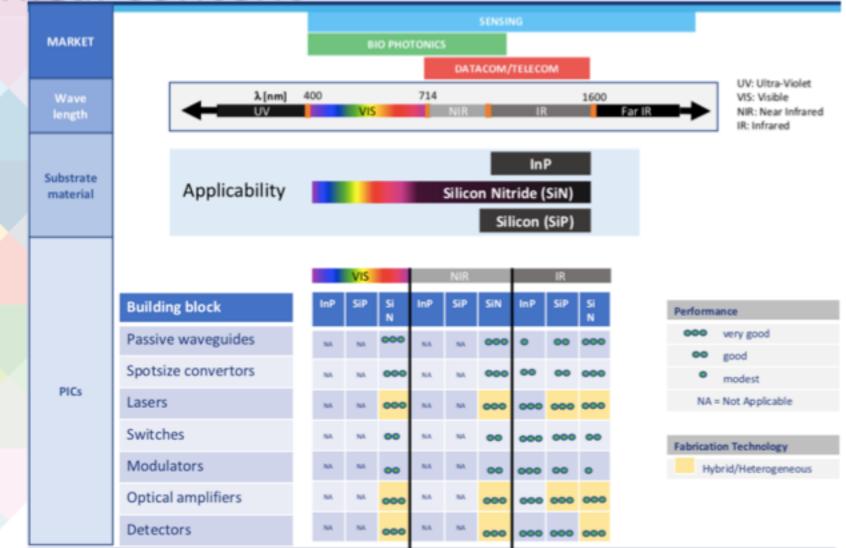
- Health cure and care
- Aerospace
- Automotive
- Agrofood & agriculture
- Safety & security
- High Tech machine building


Packaging is going to require short term attention

Source: Peter O'Brien


Scalability of manufacturing requires focus on *Design for Manufacturing* of Photonic Integrated Circuits and Systems

Courtesy: Paul van Dijk, Yi Quan, Erik Teunissen


Level of Integration: Platforms

- Chip level integration(1)
- Wafer level integration
 - Bonding of wafers (2)
 - Attachment of circuit elements (3)
- Impression of PICs on wafer (4)
- Easily connectable Building Blocks architectures (5)

Photonic Integration Technology Centre

PLATFORMS	INP	SI3N4/TRIPLEX	SOI	GAAS	POLYMEREN
Operating optical window (nm)	1300 - 2000	400 - 2350	1300 - 2000	700 - 1000	400 - 1000
Wafer Size	3" - 4" - 5" - (6")	4" - 6" - (8")	4"- 6"- 8" -12"	3" - 4"- (6")	spinning on any substrate
Index & (contrast %)	3,4 (10%)	1,8 (25 %)	2,5 (>100%)	3,2 (10%)	1.8 (< 10%)
Bending radius	100 µm	> 50 µm	>10 µm	100 µm	> 500 µm
Attenuation (dB/cm)	2,5	< 0,1	3-4	5	< 0,1
Birefringence	< 1 × 10-4	< 1 × 10-4	> 1 x 10-3	< 1 x 10-4	nvt

PLATFORMS	INP	SI3N4/TRIPLEX	SOI	GAAS	POLYMEREN
Footprint (typical PIC size)	200 x 300 µm	2.000 x 4.000 µm	200 x 300 µm	-	3.000 x 4.000 µm
CMOS compatibility	no	yes	yes		yes
Fiber chip coupling	accurate align- ment via edge coupling	very good edge coupling	accurate align- ment via grating couplers	-	easy
PIC Cost	moderate	Good	moderate	-	low
Packaging Cost	challenging	Good	challenging	-	low

PLATFORMS	INP	SI3N4/TRIPLEX	SOI	GAAS	POLYMEREN
Applicaties	datacom, inter- connects, Tunable lasers, optical switches, trans- ceivers, optical amplifiers, WDM devices, receivers	datacom, intercon- nects, visible light sensors, anten- na's, OCT, lab-on- chip, hybrid lasers with InP, 5G, RF analogue links	datacom, inter- connects, sen- sors, receivers, WDM devices	datacom transcei- vers, high power lasers	optical intercon- nects

Topics morning	Co chair 1	Co chair 2	Moderator		
Ecosystems	Peter van Arkel	Bob Pfahl	Peter van Arkel		
Tele/datacom	Michael Lebby	Michael Robertson	Wouter Verbeek		
Agri, Health, Industry	Thierry Robin	Ben Miller	Niki Lintmeijer		
Auto, Aero, Defence	Domenico D'Agostino	John Mckaay	Paul Pietersma		
EPDA/PDK/Building Blocks	Twan Korthorst	Paul van Dijk	Martijn Röfenkamp		
Front-end	Meint Smit	Lionel Kimmerling	John Eisses		
Back-end	Peter O'Brien	Dick Otte	Erik Teunissen		
Testing	Sylwester Latkowski	Anna Nikiel	Emmy Hertogh		
Topics afternoon	Co chair 1	Co chair 2	Moderator		
Tele/datacom 1 (Short haul)	Michael Lebby	Boudewijn Doctor	Martijn Röfenkamp		
Tele/datacom 2 (Wireless)	Peter Maat	Sami Musa	Wouter Verbeek		
	Peter Maat Michael Robertson	Sami Musa Paul van Dijk			
Tele/datacom 3 (Long haul)			Wouter Verbeek		
Tele/datacom 3 (Long haul) Healthcare	Michael Robertson	Paul van Dijk	Wouter Verbeek Paul Pietersma		
Tele/datacom 2 (Wireless) Tele/datacom 3 (Long haul) Healthcare Automotive Industrial equipment	Michael Robertson Thierry Robin	Paul van Dijk Peter Harmsma	Wouter Verbeek Paul Pietersma Niki Lintmeijer		
Tele/datacom 3 (Long haul) Healthcare Automotive	Michael Robertson Thierry Robin Domenico D'Agostino	Paul van Dijk Peter Harmsma Twan Korthorst	Wouter Verbeek Paul Pietersma Niki Lintmeijer Emmy Hertogh		

Outline

World Technology Mapping Forum
Technical Content
Outcome
Next steps

Outcome

Section Section

- The process for getting integration of the various roadmaps and international contribution and contributors is agreed
- Agreement is achieved on the structure of the IPSR-I document
 The meeting schedule for the *IPSR-I* is agreed and confirmed
 Detail left to be resolved: Long term financing of Roadmap development activities

Outline

World Technology Mapping Forum
Technical Content
Outcome
Next steps

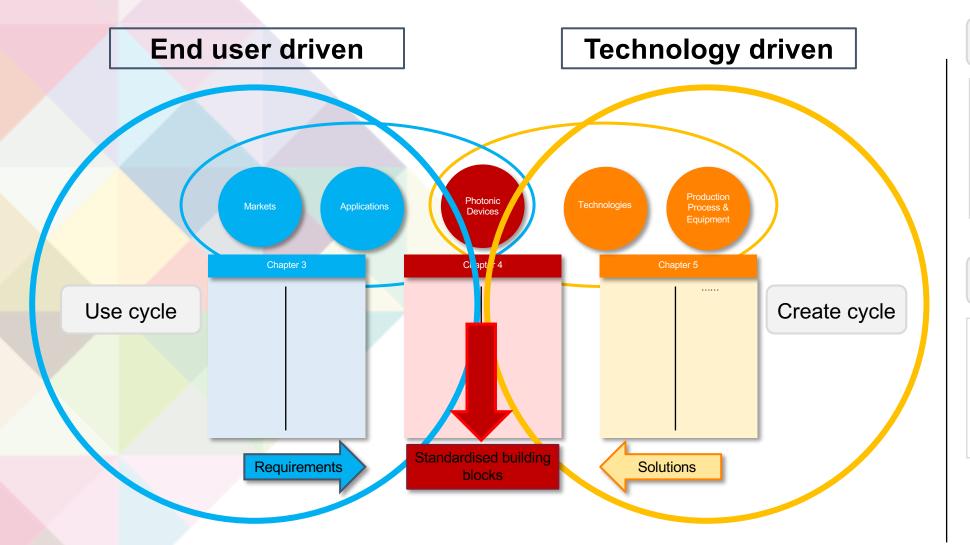
Next steps

- Merge working groups to deliver their results timely to meet the tight schedule.
- Create a formal governance structure for IPSR International.
- Consultants of Berenschot will assist the merger process
- Merge IPSR and WRIP by:
 - Setting table of contents

Discuss and set template with Working group leaders, chapter by chapter
 Merge working groups and documents, paragraph by paragraph
 Gap and overlap analysis (with full team)
 Validation & editorial

Time schedule merger

Activity	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
Discussions on template												
Merge working groups												
Gap and overlap analysis												
Validation & editorial												
Publication												
Make a glossy version												
Meetings					Fall		Win ter		Spri ng			WT MF



Time schedule

Status, Progress and Consolidation meetings Fall Meeting MIT, Boston, USA - Nov 29-30, 2018 Winter Meeting AIST, Tsukuba or Tokyo, Japan - January 2019 (exact place and date will be announced) Spring meeting, California, USA – 20th – 21st of March 2019 Summer meeting Heinrich Hertz, Berlin, Germany - June 12-14, 2019 Draft versions of IPSR-I to be discussed in Fall Meeting (Boston) and Winter Meeting (Japan) Release of first IPSR-I document during the Spring Meeting

Create and use cycle of the Basic Building Blocks "Library"

Use cycle

The application builders use the standardised building blocks in new applications for the end customers. This will generate new demands from the market side.

Create cycle

The PIC producers and designers constantly develop new standardised building blocks which are fully tested and validated.

TOC proposal

Product Emulator Groups (PEGs) Data Center/Telecom Internet of Things Automotive Aerospace **Bio photonics and medical** Agrofood Defense Photonic devices (PEGs and TWGs) Integrated photonic components and devices **RF** Photonics **Electronic-Photonic Connectors Integrated Photonic Sensors Cost Emulators Electronic Photonic Design Automation Process Design Kits** Product standardization and structure **Technology Working Groups (TWGs) Monolithic Silicon Integration** Indium Phosphide & 3-5 Compounds Silicon Nitride Novel materials **Foundry Integration for photonics Heterogenous** Integration **Electronic-Photonic Packaging Substrates Electronic-Photonic Assembly Electronic-Photonic Test**

Start-point template for TWG chapters

- Executive Summary (~1page of highlights)
- Introduction (2 or 3 pages)
- Situation (Infrastructure) Analysis (5-10 pages)
 - Manufacturing Equipment
 - Manufacturing Process
 - Materials
 - Quality/Reliability
 - Environmental Technology
 - Test, Inspection, Measurement (TIM)
- Roadmap of Quantified Key Attribute Needs (3 to 5 pages)
- Critical (Infrastructure) Issues (3- 6 pages)
- Technology Needs: (6-15 pages)
 - Prioritized Research Needs (> 5 years result)
 - Prioritized Development & Implementation Needs (< 5 years result)
- Gaps and Showstoppers (2-5 pages)
- Recommendations on Potential Alternative Technologies (2-4 pages)
- Contributors (~1page)

Discussion

Thank you for your attention!

During the first nine months of the MOU between IPSR and Photon Delta

- Combine their Roadmapping activities into a single activity.
- Publish a merged roadmap by March 2019.
- Develop a more formal governance structure for IPSR International.
- Hold four international Roadmapping workshops

 Fall 2018 IPSR-I Meeting, November 29-30, MIT Samberg Meeting Center, Cambridge, MA
 - Winter 2019 IPSR-I Meeting; January 31-February 1, 2019, University of Tokyo
 - Spring 2019 IPSR-I Meeting, March 20-21 2018, Sunnyvale California
 - $\,\circ\,$ Summer 2019 IPSR-I Meeting, June 12-14, Berlin, Germany

www.photonicsmanufacturing.org

For additional information:

Contact Bob Pfahl bpfahl@inemi.org

Driving Photonics Manufacturing